Effect of angiotensin II receptor blockage on osteopontin expression and calcium oxalate crystal deposition in rat kidneys.

نویسندگان

  • Tohru Umekawa
  • Yuji Hatanaka
  • Takashi Kurita
  • Saeed R Khan
چکیده

Hyperoxaluria leads to calcium oxalate (CaOx) crystallization and development of tubulointerstitial lesions in the kidneys. Treatment of hyperoxaluric rats with angiotensin II (Ang II) type I receptor blocker (ARB) reduces lesion formation. Because Ang II mediates osteopontin (OPN) synthesis, which is involved in both macrophage recruitment and CaOx crystallization, it was hypothesized that ARB acts via OPN. Hyperoxaluria was induced in 10-wk-old male Sprague-Dawley rats, and they were treated with ARB candesartan. At the end of 4 wk, kidneys were examined for crystal deposits, ED-1-positive cells, and expression of OPN mRNA. PCR was used to quantify OPN, renin, and angiotensin-converting enzyme (ACE) mRNA in kidneys. RIA was used to determine renal, plasma, and urinary OPN; plasma renin; Ang II and ACE; and renal Ang II. For evaluating oxidative stress, malondialdehyde was measured. Urinary calcium, oxalate, creatinine, and albumin were also determined. Despite similar urinary calcium and oxalate levels, kidneys of hyperoxaluric rats on candesartan had fewer CaOx crystals, fewer ED-1-positive cells, reduced OPN expression, and reduced malondialdehyde than hyperoxaluric rats. Urinary albumin excretion and serum creatinine levels improved significantly on candesartan treatment. mRNA for OPN, renin, and ACE were significantly elevated in hyperoxaluric rats. OPN synthesis and production increased with hyperoxaluria but to a lesser extent in candesartan-treated hyperoxaluric rats. These results show for the first time that oxalate can activate the renal renin-angiotensin system and that oxalate-induced upregulation of OPN is in part mediated via renal renin-angiotensin system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Apocynin-Treatment Reverses Hyperoxaluria Induced Changes in NADPH Oxidase System Expression in Rat Kidneys: A Transcriptional Study

PURPOSE We have previously shown that production of reactive oxygen species (ROS) is an important contributor to renal injury and inflammation following exposure to oxalate (Ox) or calcium-oxalate (CaOx) crystals. The present study was conducted, utilizing global transcriptome analyses, to determine the effect of Apocynin on changes in the NADPH oxidase system activated in kidneys of rats fed a...

متن کامل

بررسی تأثیر محرومیت از آب و غذا بر تشکیل کریستال ادراری در کلیه موش صحرایی به عنوان یک مدل تجربی

Backgroundand Objective:During the holy month of Ramadan, the number of admissions of patients with renal colic increases. This study was conducted to investigate the effects deprivation of food and water on the urinary crystals formation in the kidneys of rats as an experimental model of Ramadan-type fasting (RTF). Subjects and Method...

متن کامل

High Sodium-Induced Oxidative Stress and Poor Anticrystallization Defense Aggravate Calcium Oxalate Crystal Formation in Rat Hyperoxaluric Kidneys

Enhanced sodium excretion is associated with intrarenal oxidative stress. The present study evaluated whether oxidative stress caused by high sodium (HS) may be involved in calcium oxalate crystal formation. Male rats were fed a sodium-depleted diet. Normal-sodium and HS diets were achieved by providing drinking water containing 0.3% and 3% NaCl, respectively. Rats were fed a sodium-depleted di...

متن کامل

Involvement of urinary proteins in the rat strain difference in sensitivity to ethylene glycol-induced renal toxicity.

Ethylene glycol (EG) exposure is a common model for kidney stones, because animals accumulate calcium oxalate monohydrate (COM) in kidneys. Wistar rats are more sensitive to EG than Fischer 344 (F344) rats, with greater COM deposition in kidneys. The mechanisms by which COM accumulates differently among strains are poorly understood. Urinary proteins inhibit COM adhesion to renal cells, which c...

متن کامل

Calcium Oxalate Induces Renal Injury through Calcium-Sensing Receptor

Objective. To investigate whether calcium-sensing receptor (CaSR) plays a role in calcium-oxalate-induced renal injury. Materials and Methods. HK-2 cells and rats were treated with calcium oxalate (CaOx) crystals with or without pretreatment with the CaSR-specific agonist gadolinium chloride (GdCl3) or the CaSR-specific antagonist NPS2390. Changes in oxidative stress (OS) in HK-2 cells and rat ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Society of Nephrology : JASN

دوره 15 3  شماره 

صفحات  -

تاریخ انتشار 2004